N1CTF 2023 Writeups

發表於
分類於 CTF

This article is automatically translated by LLM, so the translation may be inaccurate or incomplete. If you find any mistake, please let me know.
You can find the original article here .

This time I participated in this event with Balsn and solved some Crypto-related problems. Here are the things I learned.

e2Is0

from string import ascii_letters
from sympy import sqrt
import random
import signal
import os
FLAG = os.environ.get('FLAG', 'n1ctf{XXXXFAKE_FLAGXXXX}')    
    
def banner():
    print("""
░░░░░░░ ░░░░░░  ░░ ░░░░░░░  ░░░░░░  
▒▒           ▒▒ ▒▒ ▒▒      ▒▒    ▒▒ 
▒▒▒▒▒    ▒▒▒▒▒  ▒▒ ▒▒▒▒▒▒▒ ▒▒    ▒▒ 
▓▓      ▓▓      ▓▓      ▓▓ ▓▓    ▓▓ 
███████ ███████ ██ ███████  ██████  
    """)

def curve_init():
    p = random_prime(2^256)
    F.<i> = GF(p^2, modulus = x**2 + 1)
    R.<t> = PolynomialRing(GF(p))
    guess = ''.join(random.choices(ascii_letters, k=20))
    RR = RealField(256)
    num = RR(int(guess.encode().hex(),16))
    j = F(str(sqrt(num)).split('.')[1])
    E = EllipticCurve(j=j)
    P = E(0).division_points(3)
    P.remove(E(0))
    phi = E.isogeny(random.choice(P))
    E2 = phi.codomain()
    j2 = E2.j_invariant()
    assert list(R(j2))[1] != 0
    return E2, p, guess

def leak(E, p):
    F = Zmod(p^2)
    R.<t> = PolynomialRing(GF(p))
    r = random.getrandbits(20)
    x = F(input("your magic number?\n$ "))^r - 1
    j_ = E.j_invariant()^x
    print(list(R(j_))[0])

def main():
    signal.alarm(120)
    banner()
    para = None
    print("Curve Initialization...")
    while not para:
        try:
            para = curve_init()
        except:
            continue
    E, p, guess = para
    print(f"einfo: {E.base_ring()}")
    leak(E, p)
    if input("guess > ").strip('\n') == guess:
        print(f"Congratz, your flag: {FLAG}")
    else:
        print("Game over!")
        

if __name__ == "__main__":
    try:
        main()
    except:
        print("error!")

First, generate a prime number pp, and a string of length 20 from ascii_letters as guess, then take the fractional part of its sqrt as an integer jj. Next, generate a curve EE with j-invariant jj over Fp\mathbb{F}_p, then find E2E_2 among its 3-isogeny neighbors, and output the j-invariant of E2E_2 which must be in the form x+yix+yi where y0y \neq 0.

Then you are given pp, and an oracle where you can input a number tt, and the server calculates x=tr1modp2x=t^r-1 \mod{p^2} and gives you the constant term of j(E2)xj(E_2)^x. The goal is to obtain guess.

A crucial point to solve this problem is to know about modular polynomials. For any two elliptic curves E1E_1 and E2E_2 that have an n-degree isogeny, Φn(j(E1),j(E2))=0\Phi_n(j(E_1), j(E_2))=0. The formula for Φn(x,y)\Phi_n(x,y) can be found here.

Modular polynomials are significant here because j-invariants over Fp2\mathbb{F}_{p^2} are in the form x+yix+yi, meaning j(E1)=a+bij(E_1)=a+bi and j(E2)=c+dij(E_2)=c+di, where a,b,c,dFpa,b,c,d \in \mathbb{F}_p. Substituting them into Φn(x,y)=0\Phi_n(x,y)=0 and separating the real and imaginary parts, Re(Φn(j(E1),j(E2)))=0\operatorname{Re}(\Phi_n(j_(E_1),j_(E_2)))=0 and Im(Φn(j(E1),j(E2)))=0\operatorname{Im}(\Phi_n(j_(E_1),j_(E_2)))=0, gives two equations. This tells us that if any two of a,b,c,da,b,c,d are known, the other two can be obtained by solving the simultaneous equations. This method is one way to solve the Isogeny Hidden Number Problem (refer to Chapter 8 of this paper).

Back to the problem, we know j(E)=a+bij(E)=a+bi with b=0b=0, and we know nothing about j(E2)=c+dij(E_2)=c+di. So, it is clear that we need to use the leak oracle to find some relationships. My initial thought was to directly leak cc, which requires x=1x=1, meaning tr2(modp2)t^r \equiv 2 \pmod{p^2}, but I couldn't figure out how to achieve this with a random rr. Later, I set t=1t=-1, so when rr is odd, x=p22x=p^2-2, and in Fp2\mathbb{F}_{p^2}, taking the p22p^2-2 power of a number is equivalent to finding its inverse.

Thus, if I set j(E2)1=e+fij(E_2)^{-1}=e+fi, where the leak returns ee, then (c+di)(e+fi)=1(c+di)(e+fi)=1, and separating the real and imaginary parts gives two equations over Fp\mathbb{F}_p. So, there are six unknowns a,b,c,d,e,fa,b,c,d,e,f, and we can form two equations from the modular polynomial and the inverse part, and four equations by separating coefficients. Knowing b=0b=0 and e=leake=\text{leak} means this system has a unique solution. Running Groebner basis might be slow, so I manually used resultant to get f(a)=0f(a)=0, and solving for aa gives the initial jj.

After obtaining jj, which is the fractional part of nn\sqrt{n}-\lfloor \sqrt{n} \rfloor, we need to find nn. I transformed jj to get r=nnr=\sqrt{n}-\lfloor \sqrt{n} \rfloor, then set k=nk=\lfloor \sqrt{n} \rfloor and squared both sides:

(r+k)2=r2+2kr+k2=n(r+k)^2=r^2+2kr+k^2=n

Noting that m=nk2m=n-k^2 is a positive integer less than 2k+12k+1, we have m2krr2=0m-2kr-r^2=0. Estimating the size of k,mk,m and using LLL, we can find m,km,k, and then n=m+k2n=m+k^2.

Proof that 0m<2k+10 \leq m<2k+1: k=nk=\lfloor \sqrt{n} \rfloor means k2n<(k+1)2k^2 \leq n < (k+1)^2, so 0nk2<2k+10 \leq n-k^2 < 2k+1.

import ast

# https://math.mit.edu/~drew/ClassicalModPolys.html
mp3_def_str = """[1,0] 1855425871872000000000
[1,1] -770845966336000000
[2,0] 452984832000000
[2,1] 8900222976000
[2,2] 2587918086
[3,0] 36864000
[3,1] -1069956
[3,2] 2232
[3,3] -1
[4,0] 1"""
mp3_def = [
    [ast.literal_eval(x) for x in line.split(" ")] for line in mp3_def_str.split("\n")
]
mp_term = (
    lambda e, coef: lambda x, y: coef * x ** e[0] * y ** e[1]
    + coef * x ** e[1] * y ** e[0]
    if e[0] != e[1]
    else coef * x ** e[0] * y ** e[1]
)
mp = lambda mp_def: lambda x, y: sum([mp_term(*term)(x, y) for term in mp_def])
mp3 = mp(mp3_def)


from pwn import process, remote
import subprocess


def connect():
    # io = process(["sage", "task.sage"])
    # return io

    io = remote("121.41.9.20", int(6668))
    io.recvuntil(b") solve ")
    pow_token = io.recvlineS().strip()
    input(f"continue run pow with {pow_token}?")
    ret = subprocess.check_output(
        "python3 <(curl -sSL https://goo.gle/kctf-pow) solve " + pow_token,
        shell=True,
        timeout=20,
    )
    print(ret)
    io.sendline(ret)
    return io


io = connect()
io.recvuntil(b"of size ")
p = ZZ(io.recvuntil(b"^2", drop=True).decode())
io.sendlineafter(b"$ ", b"-1")  # (-1)^r-1=p^2-2 (mod p^2) if r is odd
leak = ZZ(io.recvline().decode())
print(leak)

"""
j1=A+0i  # two unk
j2=C+Di  # two unk
phi(j1,j2)=0  # two eq
B=0  # one eq
(C+Di)*(leak+Fi)=1  # one unk, two eq
"""

x = var("x")
Fp = GF(p)
Fp2 = GF(p ^ 2, "i", modulus=x**2 + 1)
i = Fp2.gen()
aa, cc, dd, ff = Fp2["aa,cc,dd,ff"].gens()
PR_Fp = Fp["aa,cc,dd,ff"]
f = mp3(aa + 0 * i, cc + dd * i)
f_real = PR_Fp(f.map_coefficients(lambda c: c.polynomial()[0]))
f_imag = PR_Fp(f.map_coefficients(lambda c: c.polynomial()[1]))
g = (cc + dd * i) * (leak + ff * i) - 1
g_real = PR_Fp(g.map_coefficients(lambda c: c.polynomial()[0]))
g_imag = PR_Fp(g.map_coefficients(lambda c: c.polynomial()[1]))
aa, cc, dd, ff = PR_Fp.gens()
f1 = f_real.sylvester_matrix(f_imag, dd).det()  # function of a, c
f2 = f_real.sylvester_matrix(g_real, dd).det()  # function of a, c, f
f3 = g_real.sylvester_matrix(g_imag, dd).det()  # function of c, f
f4 = f2.sylvester_matrix(f3, ff).det()  # function of a, c
g = f1.sylvester_matrix(f4, cc).det().univariate_polynomial()  # function of a
for r, _ in g.roots():
    print(r, ZZ(r).bit_length())
    if r > 0 and ZZ(r).bit_length() < 200:
        target_j = ZZ(r)
print("j", target_j)


def recover(r):
    # r = sqrt(n) - floor(sqrt(n))
    # set k = floor(sqrt(n)) is integer
    # (r+k)^2 = r^2 + 2rk + k^2 = n
    # n - 2rk - k^2 - r^2 = 0
    # set m = n - k^2, which is approximately equal to k
    error = -4.22494828768973e-29  # the error by experimenting
    k_ap = 2 ** (20 * 8 // 2)  # approximate k

    B = matrix(
        QQ, [[1, 1, 0, 0], [-2 * QQ(r), 0, 1, 0], [-QQ(r) ** 2, 0, 0, 1]]  # m  # k  # 1
    )
    bounds = [QQ(abs(error)), k_ap, k_ap, 1]
    Q = diagonal_matrix([2**512 // b for b in bounds])
    B *= Q
    T, mul = B._clear_denom()
    T = T.LLL()
    B = T.change_ring(QQ) / mul
    B /= Q
    for row in B:
        if row[-1] < 0:
            row = -row
        if row[-1] == 1:
            n_sub_k2 = row[1]
            k = row[-2]
            return k**2 + n_sub_k2


R = RealField(256)
r = R(target_j) / 10 ** len(str(target_j))  # take the fractional part of sqrt(n)
print(r)
n = recover(r)
print(n)
guess = int(n).to_bytes(20, "big").decode()
print(guess)
io.sendline(guess.encode())
io.interactive()
# n1ctf{0h_you_c4n_get_j_fr0m_th3_h4lf@#$%}

e2D1p

from Crypto.Util.number import *
import os
FLAG = os.environ.get('FLAG', b'n1ctf{XXXXFAKE_FLAGXXXX}')
assert FLAG[:6] == b'n1ctf{' and FLAG[-1:] == b'}'
FLAG = FLAG[6:-1]


def keygen(nbits):
    while True:
        q = getPrime(nbits)
        if isPrime(2*q+1):
            if pow(0x10001, q, 2*q+1) == 1:
                return 2*q+1

def encrypt(key, message, mask):
    return pow(0x10001, message^mask, key)


p = keygen(512)
flag = bytes_to_long(FLAG)
messages = [getRandomNBitInteger(flag.bit_length()) for i in range(200)]
enc = [encrypt(p, message, flag) for message in messages]

print(f'message = {messages}')
print(f'enc = {enc}')

In short, there is an unknown pp, and let ff be the kk bits flag, then generate nn kk bits mim_i and calculate ciemif(modp)c_i \equiv e^{m_i \oplus f} \pmod{p}, where ff is the flag and e=0x10001e=\text{0x10001}.

The first thing that came to my mind was TetCTF 2022 - Fault (by @hellman), because the part about recovering the modulus is almost the same. Rewriting that method using the notation in this problem:

ciemif(modp)efje(1)fj2jmi,j(modp)\begin{aligned} c_i &\equiv e^{m_i \oplus f} \pmod{p} \\ &\equiv e^f \prod_j e^{(-1)^{f_j} 2^j m_{i,j}} \pmod{p} \end{aligned}

To find pp, we need to find some small enough aia_i such that:

iciai1(modp)\begin{aligned} \prod_i c_i^{a_i} \equiv 1 \pmod{p} \end{aligned}

Then, separating the positive and negative parts of aia_i and multiplying them gives x,yx,y, so xy0(modp)x-y \equiv 0 \pmod{p}, and gcd gives pp. The problem is how to find aia_i. To do gcd, we need multiple sets of aia_i.

Expanding the above:

iciai=i(eaifje(1)fj2jaimi,j)\prod_i c_i^{a_i} = \prod_i \left( e^{a_i f} \prod_j e^{(-1)^{f_j} 2^j a_i m_{i,j}} \right)

Taking the log of the exponent part:

iailogci=logei(aif+j(1)fj2jaimi,j)=loge(fiai+j(1)fj2j(iaimi,j))=0\begin{aligned} \sum_i a_i \log{c_i} &= \log{e} \sum_i \left( a_i f + \sum_j (-1)^{f_j} 2^j a_i m_{i,j} \right) \\ &= \log{e} \left( f \sum_i a_i + \sum_j (-1)^{f_j} 2^j \left( \sum_i a_i m_{i,j} \right) \right) = 0 \end{aligned}

So, we need iaimi,j=0\sum_i a_i m_{i,j} = 0 and iai=0\sum_i a_i = 0. To solve this, @hellman constructed a matrix:

A=[m0,0m0,1m0,k11m1,0m1,1m1,k11mn1,0mn1,1mn1,k11]A= \begin{bmatrix} m_{0,0} & m_{0,1} & \cdots & m_{0,k-1} & 1 \\ m_{1,0} & m_{1,1} & \cdots & m_{1,k-1} & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ m_{n-1,0} & m_{n-1,1} & \cdots & m_{n-1,k-1} & 1 \\ \end{bmatrix}

Each row contains the bits of mim_i, and the extra 11 at the end ensures iai=0\sum_i a_i = 0.

We need to find aia_i in kerAT\ker{A^T} (left kernel) as short vectors, which can be done using LLL.

This concept is similar to my previous challenge No modulus and last year's N1CTF ezdlp and HITCON CTF 2022 - Secret.

After finding pp, we need to find the flag. Referring to @hellman's writeup, we know there is a way to find efe^f, but p1=2qp-1=2q, making DLP infeasible. My method is to observe:

ciefje(1)fj2jmi,j(modp)c_i \equiv e^f \prod_j e^{(-1)^{f_j} 2^j m_{i,j}} \pmod{p}

The exponent part has (1)fi(-1)^{f_i}, so we can find ff bit by bit. In this problem, I found that solving sA=(0,0,,0,0,0,1)sA=(0,0,\cdots,0,0,0,1) has no solution, meaning there is no ss such that icisi=ef\prod_i c_i^{s_i} = e^f. However, sA=(0,0,,0,0,1,1)sA=(0,0,\cdots,0,0,1,1) has a solution:

icisi=efe(1)fk12k1=y\prod_i c_i^{s_i} = e^f e^{(-1)^{f_{k-1}} 2^{k-1}} = y

Here, fk1f_{k-1} is the lsb of ff, known to be 11 since ff is kk bits. To find the (k2)(k-2)th bit of the flag, solve sA=(0,0,,0,1,1,1)s'A=(0,0,\cdots,0,1,1,1) to get:

icisi=ye(1)fk22k2=yz(1)fk2=x\prod_i c_i^{s'_i} = y e^{(-1)^{f_{k-2}} 2^{k-2}} = y z^{(-1)^{f_{k-2}}} = x

So, x=yzx=yz means fk2=0f_{k-2}=0, and x=y/zx=y/z means fk2=1f_{k-2}=1. Repeating this for other bits, we can find ff bit by bit.

from sage.all import *
from Crypto.Util.number import *
from subprocess import check_output
from re import findall
from output import message, enc  # ln -s output.txt output.py
from binteger import Bin


def flatter(M):
    # compile https://github.com/keeganryan/flatter and put it in $PATH
    z = "[[" + "]\n[".join(" ".join(map(str, row)) for row in M) + "]]"
    ret = check_output(["flatter"], input=z.encode())
    return matrix(M.nrows(), M.ncols(), map(int, findall(b"-?\\d+", ret)))


def clean(n):
    for p in sieve_base:
        while n % p == 0:
            n //= p
    return n


"""
c[i]=e^(flag xor msg[i]) % p
    =e^flag*prod((-1^flag[j])*(2^j)*msg[i][j])
    =a*prod(k[i][j]^e[i][j])
"""

# ref: https://affine.group/writeup/2022-01-TetCTF#fault
bl = 159
mat = matrix(
    ZZ,
    [
        Bin(e, bl).tuple[::-1] + (1,) for e, c in zip(message, enc)
    ],  # 1 for the base b = 0x10001^flag
)
L = mat.augment(identity_matrix(mat.nrows()))
L[:, : bl + 1] *= 2**32
L = flatter(L)
assert L[0][bl] == L[1][bl] == 0
xx = product([QQ(y) ** x for x, y in zip(L[0][bl + 1 :], enc)])
yy = product([QQ(y) ** x for x, y in zip(L[1][bl + 1 :], enc)])
p = clean(gcd(xx.numer() - xx.denom(), yy.numer() - yy.denom()))
print(p)
# p = 25070940894294854944213724808057610995878580501834029791436842569011975159898869595617649716256078890953233822913946718277574163417715224718477846001735447


def field_exp(el, e):
    a, b = e.numerator(), e.denominator()
    el **= a
    q = el.parent().characteristic() // 2
    d = inverse_mod(b, q)
    return el**d


F = GF(p)
sol = mat.solve_left(vector([0] * (bl - 1) + [1, 1]))  # pick a base that works
y = product([field_exp(F(y), z) for y, z in zip(enc, sol)])
# y = F(0x10001) ** flag * F(0x10001) ** ((-1) ** flagbits[bl - 1] * 2 ** (bl - 1))
# also, flagbits[bl - 1] = 1 is known
# so we can recover bits using `c[i]=e^flag*prod((-1^flag[j])*(2^j)*msg[i][j])`

recovered_bits = [0] * bl
recovered_bits[bl - 1] = 1
for i in reversed(range(bl - 1)):
    base = vector([0] * (bl - 1) + [1, 1])
    base[i] = 1
    sol = mat.solve_left(base)
    x = product([field_exp(F(y), z) for y, z in zip(enc, sol)])
    z = F(0x10001) ** (2**i)
    if x == y * z:
        recovered_bits[i] = 0
    else:
        recovered_bits[i] = 1
    flag = Bin(recovered_bits[::-1]).bytes
    print(flag)
# n1ctf{s0o0_ezzz_dLLLp%$#@!}

e20k

#!/usr/bin/sage
from Crypto.Util.Padding import pad
from Crypto.Util.number import *
from Crypto.Cipher import AES
from hashlib import md5
import signal
import random
import os
FLAG = os.environ.get('FLAG', 'n1ctf{XXXXFAKE_FLAGXXXX}')

class ECPrng:
    def __init__(self):
        self.N = self.keygen()
        self.E = EllipticCurve(Zmod(self.N), [3, 7])
        self.bias = random.randint(1, 2^128)
        self.state = None
        print(f"N = {self.N}")
        
    def keygen(self):
        P = getPrime(256)
        while True:
            q = getPrime(256)
            if is_prime(2*q-1):
                Q = 2*q^2-q
                return P*Q
    
    def setState(self, x0, y0):
        self.state = self.E(x0, y0)
    
    def next(self):
        self.state = 4*self.state
        return int(self.state.xy()[0])+self.bias

def v2l(v):
    tp = []
    for item in v:
        tp.append(item.list())
    return tp

def Sample(eta, num, signal=0):
    if signal:
        random.seed(prng.next())
    s = []
    for _ in range(num):
        if random.random() < eta:
            s.append(1)
        else:
            s.append(0)
    return Rq(s)

class P:
    def __init__(self, A, s, t):
        self.A = A
        self.s = s
        self.t = t
        self.y = None
    
    def generateCommit(self, Verifier):
        self.y = vector(Rq, [Sample(0.3, N, 1) for _ in range(m)])
        w = self.A * self.y
        Verifier.w = w
        print(f"w = {w.list()}")
        
    def generateProof(self, Verifier, c):
        z = self.s*c + self.y
        print(f"z = {v2l(z)}")
        Verifier.verifyProof(z)

class V:
    def __init__(self, A, t):
        self.A = A
        self.t = t
        self.w = None
        self.c = None
        
    def challenge(self, Prover):
        self.c = Sample(0.3, N)
        print(f"c = {self.c.list()}")
        Prover.generateProof(self, self.c)
        
    def verifyProof(self, z):
        if self.A*z == self.t*self.c + self.w:
            return True
        return False

def Protocol(A, secret, t):
    prover = P(A, secret, t)
    verifier = V(A, t)
    prover.generateCommit(verifier)
    verifier.challenge(prover)

if __name__ == "__main__":
    try:
        signal.alarm(120)
        print("ECPRNG init ...")
        prng = ECPrng()
        x0, y0 = input("PLZ SET PRNG SEED > ").split(',')
        prng.setState(int(x0), int(y0))
        N, q, m = (256, 4197821, 15)
        PRq.<a> = PolynomialRing(Zmod(q))
        Rq = PRq.quotient(a^N + 1, 'x')
        A = vector(Rq, [Rq.random_element() for _ in range(m)])
        secret = vector(Rq, [Sample(0.3, N) for _ in range(m)])
        t = A*secret
        print(f"A = {v2l(A)}")
        print(f"t = {t.list()}")
        Protocol(A, secret, t)
        cipher = AES.new(md5(str(secret).encode()).digest(), mode=AES.MODE_ECB)
        print(f"ct = {cipher.encrypt(pad(FLAG.encode(), 16)).hex()}")
    except:
        print("error!")

This problem involves a magical PRNG and a ZKP protocol I am unfamiliar with.

First, the PRNG generates n=pqr=pq(2q1)n=pqr=pq(2q-1), and you need to decide a point PP on an elliptic curve E:y2=x3+3x+7E: y^2=x^3+3x+7 with fixed parameters. Checking with sage, EE has no rational points, so finding PP requires factoring nn.

I noticed that r+1=2qr+1=2q, and 2n2n is a multiple of pqrpqr, so I thought of using algebraic-group factorization in Fr2\mathbb{F}_{r^2}. For more details, refer to my previous challenge Imaginary CTF 2023 - Sus.

After factoring, choose PP by selecting PpE(Fp),PqE(Fq),PrE(Fr)P_p \in E(\mathbb{F}_p), P_q \in E(\mathbb{F}_q), P_r \in E(\mathbb{F}_r) and using CRT.

Next is the ZKP part with parameters N,q,mN,q,m (don't confuse this qq with the previous one). It involves operations in R=Zq[x]/(xN+1)R=\mathbb{Z}_q[x]/(x^N+1). Initially, there is a vector ARmA \in R^m and a secret vector sRms \in R^m, where each component of ss is 00 or 11, with 30% being 1 (from Sample). Then, compute the inner product t=Ast=As as the public key.

The protocol part is complex, but only cc, yy, and zz are relevant. First, cRc \in R, also from Sample, with 30% 1s. yRmy \in R^m is a vector, each component from Sample, but with signal=1, meaning random.seed(prng.next()) is called before sampling. Finally, the proof zRmz \in R^m satisfies z=cs+yz=cs+y.

Here, cRc \in R, sRms \in R^m, so cscs should be understood as scalar-vector multiplication.

Without knowing yy, solving ss from A,tA,t and z,cz,c seems only possible with lattice reduction, but N=256N=256 makes it hard. Another approach is to interfere with y,asonlyy`, as only y` is seeded by the PRNG, which we can control to some extent.

The PRNG update is simple: Pi+1=4PP_{i+1}=4P, outputting oi=(Pi)x+bo_i=(P_i)_x+b, where bb is a random bias we don't know. Without knowing bb, controlling PP doesn't help predict oio_i. I thought setting Pi+1=PiP_{i+1}=P_i would make oi+1=oio_{i+1}=o_i, requiring 4P=P3P=04P=P \rightarrow 3P=0, meaning PP is a 3-torsion subgroup generator. So, if pqr0(mod3)p \equiv q \equiv r \equiv 0 \pmod{3}, we can find such $P`.

When PRNG outputs oio_i are the same, each yiRy_i \in R is the same. Then, from z=cs+yz=cs+y, separating components gives zicsi=yiz_i-cs_i=y_i, and since yiy_i is constant:

zizjc(sisj)=0z_i-z_j-c(s_i-s_j)=0

Thus, sisjs_i - s_j can be found, but solving sis_i is still tricky. The key is that sis_i coefficients are 0,10,1, with subtraction table:

-01
001
1-10

This means 11 can only come from 101-0, and 1-1 from 010-1. So, sisjs_i - s_j coefficients of 11 mean sis_i has 11 in the same position, and 1-1 similarly. Finding multiple sisjs_i - s_j gives sis_i. This technique was also used in HITCON CTF 2022 - Easy NTRU.

from pwn import process, remote, context
import ast
from Crypto.Cipher import AES
from hashlib import md5
from Crypto.Util.Padding import unpad
import subprocess

N, q, m = (256, 4197821, 15)
PRq = PolynomialRing(Zmod(q), "a")
a = PRq.gen()
Rq = PRq.quotient(a ^ N + 1, "x")
mod = a ^ N + 1


def connect():
    # io = process(["sage", "task.sage"])
    # return io

    io = remote("121.41.9.20", int(6666))
    io.recvuntil(b") solve ")
    pow_token = io.recvlineS().strip()
    input(f"continue run pow with {pow_token}?")
    ret = subprocess.check_output(
        "python3 <(curl -sSL https://goo.gle/kctf-pow) solve " + pow_token,
        shell=True,
        timeout=20,
    )
    print(ret)
    io.sendline(ret)
    return io


io = connect()
io.recvuntil(b"N = ")
n = int(io.recvline().strip())


def do_factor(n):
    # n=p*q*r=p*q*(2*q-1)
    # |GF(r^2)|=r^2-1=(r+1)*(r-1)
    # r+1=2*q -> 2*n is a multiple of r+1
    # so we can apply algebraic group factorization
    R = Zmod(n)["x"]
    while True:
        Q = R.quo(R.random_element(2))
        rr = gcd(ZZ(list(Q.random_element() ^ (2 * n))[1]), n)
        if rr != 1:
            qq = (rr + 1) // 2
            pp = n // qq // rr
            assert pp * qq * rr == n
            return pp, qq, rr


def pick_xy(primes):
    xs = []
    ys = []
    for i, p in enumerate(primes):
        # we want 4P=P, that is, 3P=0
        # so we want to find a generator to the 3-torsion subgroup
        # we can't use P=0 as .xy() will throw at point at infinity
        # success rate is 1/27 :)
        E = EllipticCurve(GF(p), [3, 7])
        assert E.order() % 3 == 0, f"unlucky at {i}-th prime"
        G = E.gen(0)
        P = G * (E.order() // 3)
        x, y = map(ZZ, P.xy())
        xs.append(x)
        ys.append(y)
    x = crt(xs, primes)
    y = crt(ys, primes)
    return x, y


p, q, r = do_factor(n)
print(p, q, r)

x, y = pick_xy([p, q, r])
print(x, y)

io.sendline(f"{x},{y}".encode())

io.recvuntil(b"A = ")
a_list = ast.literal_eval(io.recvlineS().strip())
io.recvuntil(b"t = ")
t_list = ast.literal_eval(io.recvlineS().strip())
io.recvuntil(b"c = ")
c_list = ast.literal_eval(io.recvlineS().strip())
io.recvuntil(b"z = ")
z_list = ast.literal_eval(io.recvlineS().strip())
io.recvuntil(b"ct = ")
ct = bytes.fromhex(io.recvlineS().strip())

A = vector([PRq(a) for a in a_list])
t = PRq(t_list)
c = PRq(c_list)
z = vector([PRq(z) for z in z_list])

# pz[i]-pc*secret[i]=y[i]
# so pz[i]-pz[j]-pc*(secret[i]-secret[j])=y[i]-y[j]=0 (we controlled the prng to make y[i]-y[j]=0)
# and we can solve for secret[i]-secret[j]
# note that secret[i] are binary polynomials (i.e. 0, 1)
# so a `1` in secret[i]-secret[j] is only possible if secret[i]=1 and secret[j]=0
# so we can recover secret[i] by checking which bits are `1` in secret[i]-secret[j]

# another way to solve for the inverse using linear algebra
# x = PRq.gen()
# mat = matrix([vector((c * x**i % mod).padded_list(N)) for i in range(N)])

# this can be optimized by accounting for `-1` in secret[i]-secret[j]
# from n*(n-1) to C(n, 2)=n*(n-1)/2
def get_secret(i):
    result = [0] * N
    for j in range(m):
        if j == i:
            continue
		# another way to solve for the inverse using linear algebra
        # sol = mat.solve_left(vector(((z[i] - z[j]) % mod).padded_list(N)))
        sol = ((Rq(z[i]) - Rq(z[j])) / c).lift().padded_list(N)
        oneidxs = [i for i, v in enumerate(sol) if v == 1]
        for idx in oneidxs:
            result[idx] = 1
    return PRq(result)


secret_prq = vector([get_secret(i) for i in range(m)])
assert (A * secret_prq - t) % mod == 0
secret = vector([Rq(x) for x in secret_prq])
cipher = AES.new(md5(str(secret).encode()).digest(), mode=AES.MODE_ECB)
flag = unpad(cipher.decrypt(ct), 16)
print(flag)
# n1ctf{A_Weak_RSIS_pr0bl3m_H373!!}

From the flag, it is clear this is based on ring-SIS.

After the competition, @Neobeo mentioned two improved strategies: using P-P and PP having the same x-coordinate allows 5-torsion subgroup, and the problem also gives w=Ayw=Ay, so with constant yiy_i, yi=w/iAiy_i=w/\sum_{i}{A_i} can be found.